Selasa, 23 Maret 2010

Turbin gas

Turbin gas adalah sebuah mesin berputar yang mengambil energi dari arus gas pembakaran. Dia memiliki kompresor naik ke-atas dipasangkan dengan turbin turun ke-bawah, dan sebuah bilik pembakaran di-tengahnya.

Energi ditambahkan di arus gas di pembakar, di mana udara dicampur dengan bahan bakar dan dinyalakan. Pembakaran meningkatkan suhu, kecepatan dan volume dari aliran gas. Kemudian diarahkan melalui sebuah penyebar (nozzle) melalui baling-baling turbin, memutar turbin dan mentenagai kompresor.

Energi diambil dari bentuk tenaga shaft, udara terkompresi dan dorongan, dalam segala kombinasi, dan digunakan untuk mentenagai pesawat terbang, kereta, kapal, generator, dan bahkan tank.

Teori operasi

Turbin gas dijelaskan secara termodinamika oleh Siklus Brayton, di mana udara dikompresi isentropic sekutu, pembakaran terjadi pada tekanan konstan, dan ekspansi terjadi di turbin isentropically kembali untuk tekanan awal.

Dalam prakteknya, gesekan dan turbulensi menyebabkan:

  1. Isentropic non-kompresi: untuk suatu tekanan secara keseluruhan rasio, suhu pengiriman kompresor lebih tinggi dari ideal.
  2. Non-isentropic ekspansi: walaupun penurunan suhu turbin yang diperlukan untuk menggerakkan kompresor tidak terpengaruh, tekanan terkait rasio lebih besar, yang mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.
  3. Tekanan kerugian dalam asupan udara, combustor dan knalpot: mengurangi ekspansi yang tersedia untuk menyediakan kerja yang bermanfaat.

Seperti semua siklus mesin panas s, suhu pembakaran yang lebih tinggi berarti lebih besar efisiensi. Faktor pembatas adalah kemampuan baja, nikel, keramik, atau materi lain yang membentuk mesin untuk menahan panas dan tekanan. Teknik cukup masuk ke bagian turbin menjaga dingin. Kebanyakan turbin juga mencoba untuk memulihkan knalpot panas, yang sebaliknya adalah energi terbuang. Recuperator s adalah heat exchanger s yang lulus knalpot panas ke udara terkompresi, sebelum pembakaran. Gabungan siklus desain lulus limbah panas ke uap turbin sistem. Dan gabungan panas dan kekuasaan (co-generation) menggunakan limbah panas untuk produksi air panas.

Mekanis, turbin gas dapat kurang kompleks daripada pembakaran piston mesin. Sederhana turbin mungkin memiliki satu bergerak bagian: poros / kompresor / turbin / alternatif rotor perakitan (lihat gambar di atas), belum termasuk sistem bahan bakar. Namun, manufaktur presisi yang diperlukan untuk komponen dan paduan tahan temperatur yang diperlukan untuk efisiensi yang tinggi sering membuat pembangunan turbin sederhana lebih rumit daripada mesin piston.

Lebih canggih turbin (seperti yang ditemukan di zaman modern mesin jet) dapat memiliki beberapa shaft (kelos), ratusan turbin baling, bergerak stator blades, dan sistem yang luas kompleks pipa, combustors dan penukar panas.

Sebagai aturan umum, semakin kecil mesin semakin tinggi tingkat perputaran poros (s) yang diperlukan untuk mempertahankan kecepatan tertinggi. Kecepatan sudu turbin menentukan tekanan maksimum yang dapat diperoleh, hal ini menghasilkan daya maksimum yang mungkin tergantung pada ukuran mesin. Mesin jet s beroperasi sekitar 10.000 rpm dan mikro turbin s sekitar 100.000 rpm.

Thrust bantalan s dan jurnal bantalan adalah bagian penting dari desain. Secara tradisional, mereka telah hidrodinamik minyak bantalan, atau minyak-cooled bola bantalan s. Bantalan ini sedang dikalahkan oleh foil bantalan s, yang telah berhasil digunakan dalam turbin mikro dan unit daya tambahan s.

Tidak ada komentar:

Posting Komentar